Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Over-Expression of ERF38 Gene Enhances Salt and Osmotic Tolerance in Transgenic Poplar.

Identifieur interne : 000809 ( Main/Exploration ); précédent : 000808; suivant : 000810

Over-Expression of ERF38 Gene Enhances Salt and Osmotic Tolerance in Transgenic Poplar.

Auteurs : Zihan Cheng [République populaire de Chine] ; Xuemei Zhang [République populaire de Chine] ; Kai Zhao [République populaire de Chine] ; Wenjing Yao [République populaire de Chine] ; Renhua Li [République populaire de Chine] ; Boru Zhou [République populaire de Chine] ; Tingbo Jiang [République populaire de Chine]

Source :

RBID : pubmed:31749818

Abstract

Ethylene response factor (ERF) gene family plays an important role in abiotic stress responses. In this study, we isolated a salt-inducible ERF gene, ERF38 (Potri.006G138900.1), from the 84K poplar (Populus alba × Populus glandulosa) and investigated its functions in salt and osmotic tolerance. We identified that ERF38 protein was targeted to nucleus and had no self-activation. Results from yeast-one-hybrid indicated that the ERF38 protein can specifically bind to the dehydration responsive element (DRE). We then successfully transferred the ERF38 gene into the 84K poplar. Under respective salt and polyethylene glycol (PEG)-6000 stresses, four of the physiological traits, including peroxidase (POD) and superoxide dismutase (SOD) activities, soluble protein content, and proline content, increased significantly in the transgenic plants, compared to the wild type. Regarding the other two parameters, hydrogen peroxide (H2O2) and malondialdehyde (MDA) content, their increments in the transgenic lines under the stresses, which were compared to the water control, were significantly low than that of the wild type. In addition, reactive oxygen species (ROS) are scavenged in the transgenic lines under the stresses, but not in the wild type (WT). Interestingly, when challenged with the stresses, expression levels of a few genes associated with POD and SOD metabolism were significantly increased in the transgenic poplars. In all, evidence from morphological, physiological, and biochemical analyses indicated that over-expression of ERF38 gene can improve salt and osmotic tolerance in the transgenic poplar.

DOI: 10.3389/fpls.2019.01375
PubMed: 31749818
PubMed Central: PMC6843637


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Over-Expression of
<i>ERF38</i>
Gene Enhances Salt and Osmotic Tolerance in Transgenic Poplar.</title>
<author>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xuemei" sort="Zhang, Xuemei" uniqKey="Zhang X" first="Xuemei" last="Zhang">Xuemei Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Bamboo Research Institute, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Bamboo Research Institute, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Renhua" sort="Li, Renhua" uniqKey="Li R" first="Renhua" last="Li">Renhua Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31749818</idno>
<idno type="pmid">31749818</idno>
<idno type="doi">10.3389/fpls.2019.01375</idno>
<idno type="pmc">PMC6843637</idno>
<idno type="wicri:Area/Main/Corpus">000598</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000598</idno>
<idno type="wicri:Area/Main/Curation">000598</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000598</idno>
<idno type="wicri:Area/Main/Exploration">000598</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Over-Expression of
<i>ERF38</i>
Gene Enhances Salt and Osmotic Tolerance in Transgenic Poplar.</title>
<author>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xuemei" sort="Zhang, Xuemei" uniqKey="Zhang X" first="Xuemei" last="Zhang">Xuemei Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Bamboo Research Institute, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Bamboo Research Institute, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Renhua" sort="Li, Renhua" uniqKey="Li R" first="Renhua" last="Li">Renhua Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ethylene response factor (ERF) gene family plays an important role in abiotic stress responses. In this study, we isolated a salt-inducible ERF gene,
<i>ERF38</i>
(Potri.006G138900.1), from the 84K poplar (
<i>Populus alba × Populus glandulosa</i>
) and investigated its functions in salt and osmotic tolerance. We identified that ERF38 protein was targeted to nucleus and had no self-activation. Results from yeast-one-hybrid indicated that the ERF38 protein can specifically bind to the dehydration responsive element (DRE). We then successfully transferred the
<i>ERF38</i>
gene into the 84K poplar. Under respective salt and polyethylene glycol (PEG)-6000 stresses, four of the physiological traits, including peroxidase (POD) and superoxide dismutase (SOD) activities, soluble protein content, and proline content, increased significantly in the transgenic plants, compared to the wild type. Regarding the other two parameters, hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) and malondialdehyde (MDA) content, their increments in the transgenic lines under the stresses, which were compared to the water control, were significantly low than that of the wild type. In addition, reactive oxygen species (ROS) are scavenged in the transgenic lines under the stresses, but not in the wild type (WT). Interestingly, when challenged with the stresses, expression levels of a few genes associated with POD and SOD metabolism were significantly increased in the transgenic poplars. In all, evidence from morphological, physiological, and biochemical analyses indicated that over-expression of
<i>ERF38</i>
gene can improve salt and osmotic tolerance in the transgenic poplar.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31749818</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Over-Expression of
<i>ERF38</i>
Gene Enhances Salt and Osmotic Tolerance in Transgenic Poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>1375</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01375</ELocationID>
<Abstract>
<AbstractText>Ethylene response factor (ERF) gene family plays an important role in abiotic stress responses. In this study, we isolated a salt-inducible ERF gene,
<i>ERF38</i>
(Potri.006G138900.1), from the 84K poplar (
<i>Populus alba × Populus glandulosa</i>
) and investigated its functions in salt and osmotic tolerance. We identified that ERF38 protein was targeted to nucleus and had no self-activation. Results from yeast-one-hybrid indicated that the ERF38 protein can specifically bind to the dehydration responsive element (DRE). We then successfully transferred the
<i>ERF38</i>
gene into the 84K poplar. Under respective salt and polyethylene glycol (PEG)-6000 stresses, four of the physiological traits, including peroxidase (POD) and superoxide dismutase (SOD) activities, soluble protein content, and proline content, increased significantly in the transgenic plants, compared to the wild type. Regarding the other two parameters, hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) and malondialdehyde (MDA) content, their increments in the transgenic lines under the stresses, which were compared to the water control, were significantly low than that of the wild type. In addition, reactive oxygen species (ROS) are scavenged in the transgenic lines under the stresses, but not in the wild type (WT). Interestingly, when challenged with the stresses, expression levels of a few genes associated with POD and SOD metabolism were significantly increased in the transgenic poplars. In all, evidence from morphological, physiological, and biochemical analyses indicated that over-expression of
<i>ERF38</i>
gene can improve salt and osmotic tolerance in the transgenic poplar.</AbstractText>
<CopyrightInformation>Copyright © 2019 Cheng, Zhang, Zhao, Yao, Li, Zhou and Jiang.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Zihan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xuemei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Wenjing</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Bamboo Research Institute, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Renhua</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Boru</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Tingbo</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ERF38 gene</Keyword>
<Keyword MajorTopicYN="N">gene expression</Keyword>
<Keyword MajorTopicYN="N">genetic transformation</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">salt and osmotic tolerance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31749818</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01375</ArticleId>
<ArticleId IdType="pmc">PMC6843637</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2017 Jan;40(1):108-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27723941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Feb;78(3):275-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22130861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 May;2(3):135-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Mar;124:88-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29353686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 26;8:635</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28491072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicon. 2004 Mar 15;43(4):393-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15051402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2016 Sep;158(1):45-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26991441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 May;12(4):468-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24393105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Apr;281:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30824042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 02;10(6):e0127831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26035591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1978 Jul 11;163(2):181-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">355847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):896-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(4):907-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24371253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Feb;31(2):349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22038370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Mar;280:132-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30823991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Sep 04;9:1121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30233602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Apr 04;9:395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29670637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 04;8:1361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28824690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2018 Jul;37(7):1049-1060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29687169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Mar;75(4-5):365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21327835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jan 22;6:1167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26834756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 28;7:570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Feb;15(2):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 18;7(1):8821</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28821770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Aug;16(8):1514-1528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29406575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2015 Apr;290(2):531-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25332074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(9):2635-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25779701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Dec;9(12):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Dec;48(12):909-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3781-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1990 Oct;9(6):293-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Feb;6(2):251-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8148648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Nov;132:683-695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30146417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jun;73(3):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20135196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Dec 19;11(12):e0168040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27992471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Med Biol Res. 2005 Jul;38(7):995-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 13;8:1752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29081783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2014 Jul;80:278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24813727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Jan 7;70(2):519-528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30380101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 30;7:1279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27625661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Oct 15;70(19):5471-5486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31267122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2019 Mar;38(3):403-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30684024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2013 Oct;250(5):1079-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23361901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Dec;53(12):951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22067051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Jan;16(1):221-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28636266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
</noRegion>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<name sortKey="Li, Renhua" sort="Li, Renhua" uniqKey="Li R" first="Renhua" last="Li">Renhua Li</name>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<name sortKey="Zhang, Xuemei" sort="Zhang, Xuemei" uniqKey="Zhang X" first="Xuemei" last="Zhang">Xuemei Zhang</name>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000809 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000809 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31749818
   |texte=   Over-Expression of ERF38 Gene Enhances Salt and Osmotic Tolerance in Transgenic Poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31749818" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020